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Abstract-Analytical and experimental analyses are presented for bulk and diffusional flow of a binary gas 
mixture under steady-state conditions. The analyses are valid for the entire region between pure molecular 
and viscous flow. The analytical analysis is made for flow through a capillary tube subjected to a small 
pressure gradient. A momentum balance is applied to one component of the gaseous mixture in order to 
determine an equation for the rate of transport of that component. 

Analytical results for the capillary tube are modified for the case of transport through a porous material 
by considering this material to be a bundle of capillary tubes. Experimental results for the transport of an 
air-water-vapor mixture through freeze-dried meat are presented; these results compare favorably with 

the analytical results for the porous material. 

NOMENCLATURE 

Avogadro’s number [molecules/mole] ; 
area occupied by component 2 [ft’]; 
molar flux factor, 1 + N2/N1, dimen- 
sionless ; 
- N,aL/c,, dimensionless ; 
b,c, 8SRT/3mD,, [lbJft2]; 
constant given by pD,,/RT [mole/ft s] ; 
integration constant ; 
diffusion coeffkient for binary mixture 

[ft”/s] ; 
Knudsen’s diffusion coefficient, 
frV2 [ft’/s] ; 
average diffusion coeffkient, 

aRTN,(x, - x01 ln 1 - ~2, 

P 
1 Cft"/sl ; 

external force on component 2 per unit 
volume [lbr/ft3] ; 
Boltzmann’s constant, R/A [ft IbJmole- 
cule degR] ; 
Knudsen’s number, characteristic di- 
mension/mean free path, dimension- 
less ; 

_ 
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Health Service Research Grant EF 06102-02 from the 
division of Environmental Engineering and Food Protection. 

519 

2L 

L, 
m2, 

n, 

n17 

n2, 

N2, 

T, 

u, 

Ul, 

length of capillary tube [ft] ; 
mass of gas component 2 molecule 

Clbml ; 
mixture molecular density [molecules/ 
ft”] ; 
molecular density of component 1 
[(molecules of component 1)/f@] ; 
molecular density of component 2 
[(molecules of component 2)/ft3] ; 
molar flow rate of component 1 [(moles 
of component 1)/s ft”] ; 
molar flow rate of component 2 [(moles 
of component 2)/s ft’] ; 
total pressure [torr] ; 
total pressure drop, (pL - p,J [torr] ; 
partial pressure component 1 [torr] ; 
partial pressure component 2 [torr] ; 
capillary radius [ft] ; 
reflection coeffkient, dimensionless ; 
universal gas constant [ft lb,/mole 

degR1; 
temperature [“R] ; 
macroscopic gas mixture velocity 

[ft/sl ; 
macroscopic velocity of component 1 

Cft/s] ; 
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V, 

v,, 

K, 

x, 

Yl, 

YZ, 

-. 
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macroscopic velocity of component 2 

[ft/s] ; 
volume occupied by both components 

[ft”]; 
volume occupied by component 2 [ft”] ; 
average molecular velocity of com- 
ponent 2, (MT/m,rr)+ [ft/s] ; 
axial tube coordinate [ft] ; 
concentration of component 1 [moles 
of component l/moles of mixture] ; 
concentration of component 2 [moles 
of component 2/males of mixture] ; 

nondimensional axial distance, x/L, 
dimensionless. 

Subscripts 
a, air ; 

2, 
effective value ; 
position at tube exit ; 

W, water-vapor ; 

0, position at tube entrance; 
1, component 1; 
2, component 2. 

INTRODUCTION 

THERE are many applications requiring the pre- 
diction of the combined bulk and diffusional flow 
rate in the transition regime under the conditions 
of a non-uniform total pressure gradient. For 
example, the freeze-drying of food products in- 
volves the simultaneous diffusion and bulk 
movement of a binary mixture of air and water- 
vapor through a porous material under the 
influence of a small pressure gradient. The void 
structure of the porous material is such that the 
transport occurs in the region between the mole- 
cular and viscous condition (0.01 < Kn < 10). 
This region will be subsequently referred to as 
the “transition regime”. 

To understand the transition regime, first 
consider the case where the mean free path of the 
molecules is much less than the characteristic 
dimensions of the system such as the tube 
diameter. If a total pressure gradient exists, both 
components ofthe binary mixture are transferred 
by bulk movement of the gas. If, in addition, a 
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concentration gradient exists the movement of 
each component is superimposed on the bulk 
movement. At the opposite extreme, when the 
mean free path is much greater than the charac- 
teristic dimension, there is a negligible inter- 
action between the molecules. Consequently the 
transport is given by Knudsen’s [l] equation 
for molecular streaming under the influence of 
either a concentration or total pressure gradient. 
Between these extremes, when the mean free 
path and the characteristic dimension are 
approximately equal, a combination of these 
transport modes occurs and this phenomenon is 
termed transition flow. 

Evans et al. [2] present equations for com- 
bined bulk and diffusional transport in the 
transition regime under the conditions of a non- 
uniform total pressure distribution. However, 
the so-called “dusty gas” model was used in 
which the porous material is idealized as another 
constituent of immovable large molecules. In 
addition, the results are valid only for the special 
case of self-diffusion or counter-diffusion of 
gases with equal molecular weight. The current 
paper is concerned with porous materials of a 
capillaric nature rather than one composed of 
extremely line particles for which the dusty gas 
model is valid. In addition, all flux ratios of the 
two constituents are considered. A different 
method (momentum-transfer method) is used 
in the present case to obtain the governing dif- 
ferential equation. 

Harper and Chichester [3] state that experi- 
mental thermal conductivity data for gases in the 
transition regime can be used to predict the 
product of pressure and diffusion coefficient, 
pD,,, They point out that for the continuous 
flow regime, simple kinetic theory shows that 
both the thermal conductivity and pDIz are 
independent of pressure. Furthermore, in the 
transition regime, due to the analogy between 
heat and mass transfer, both quantities should 
decrease in a similar manner with decreasing 
pressure. However, in the continuous flow 

regime, Present [l] notes that the simple kinetic 
theory expression giving thermal conductivity 
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to be independent of pressure gives excellent 
agreement with experimental data. The corre- 
sponding development for pD,, shows that it 
should be independent of pressure but heavily 
dependent on the concentration of the gaseous 
components; this expression for pD,, cannot be 
experimentally substantiated. The dichotomy 
between the simple kinetic theory expression 
and experimental data results from the basic 
difference between the nature of the transport of 
mass and energy. For energy transfer across a 
given plane, the specific identity of the com- 
ponent molecules (either component 1 or com- 
ponent 2) is not important, whereas for mutual 
diffusion, the identity of the molecules is quite 
important. The mass transfer depends in part 
on whether the molecules collide with like 
or unlike molecules before crossing the plane. 
The collision of like molecules prior to crossing 
the plane does not affect the diffusive transport 
process, but is greatly affected if unlike mole- 
cules collide. Thus since the two mechanisms 
of transfer are not exactly analogous in the con- 
tinuous flow regime, it appears unlikely that 
they would be analogous in the transition 
regime. It is desirable, therefore, to analytically 
and experimentally examine the assumption 
made by Harper and Chichester for combined 
bulk and diffusion flow of a binary gas mixture. 
Small total pressure and concentration gradients 
are assumed to exist simultaneously. 

Consequently, the purpose of this paper is to 
present analytical results to determine the rate 
of mass transfer under the above conditions. 
Also, the analytical work is compared with ex- 
perimental findings and with the results of the 
theory of Harper and Chichester. 

ANALYTICAL INVESTIGATION 

Johnson [4] suggests that the steady diffusion 
equation for continuous transport can be inter- 
preted as an equation of motion of one of the 
constituent gases. The equation in the form of an 
equation of motion valid for the one-dimensional 
transport of a binary gas at uniform total pres- 

sure is : 

F, - dp, - 2 n,n,(u, - ui) dx = 0. (1) 
12 

The first term in equation (1) is the total external 
force per unit area on component 2, the second 
term is the force per unit area on component 2 
due to a partial pressure gradient and the third 
term is the momentum transfer to component 2 
due to collisions with component 1. 

If a small total pressure gradient exists, the 
Maxwell-Boltzmann distribution function 
evaluated at the average pressure is very nearly 
the same as for the uniform pressure case. 
Therefore, the last term in equation (1) still 
adequately describes the momentum exchange 
between the two constituents. However, the 
total pressure gradient causes an effective ex- 
ternal force on component 2 which is equal to 
the product of the total pressure gradient and 
the average area occupied by this component. 
From Dalton’s law, it can be easily shown that 
the cross-sectional area of component 2 is 

A, = nr2p2Jp. (2) 

Since the net force on component 2 due to the 
total pressure gradient is A,dp, equation (1) 
can be written as 

pzdplp - dpz = g nln2(u2 - ui) dx: (3) 
12 

Equation (3) is valid for continuous flow when 
only intermolecular interactions are important. 
For transitional flow, one must consider molecu- 
lar encounters with the wall; therefore, equation 
(3) must be altered to include the resulting mo- 
mentum exchange with the wall. From kinetic 
theory, the number of molecules striking the 
inside of the capillary surface per unit time is 
~rn2V2 dx/2. If diffuse reflections occur, the 
average velocity change resulting from a molecu- 
lar collision with the wall is u2. In general, the 
average velocity change is u,S, where S is the 
reflection coefficient, defined as the number of 
molecules striking a unit area with completely 
diffuse momentum exchange divided by total 
number of molecules striking the unit area. 
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Therefore, the momentum exchange with the wall 
for each molecule is m2uzS. Taking this into 
consideration, equation (3) becomes 

(PIP) dp - dp, = g n~nz(uz - ~,)dx 
12 

+ Sm2u2n2V2 dx/2r. (4) 

This equation is the final form of the differential 
equation of motion for one component of a 
binary gas mixture. It is valid for the case of 
combined bulk and diffusional flow in the transi- 
tion regime under the condition of a non- 
uniform total pressure gradient. 

An expression for the average molecular 
velocity can be determined from kinetic theory if 
a Maxwellian distribution is assumed. This 
expression is 

Since 

V2 = (SKT/nm,)+. (5) 

dp p2 p - dp, = -p d : = -pdy,, (6) 

equation (4) can be combined with equations 
(5) and (6) to give 

From Dalton’s law of partial pressures, 

y, + y, = 1.0, (8) 

and making use of the definition of a, y, and y,, 

and substituting equation (8) into equation (7) 
gives 

N, dx = 

~42 dY2 8SD12 - 
RT - aY2 + 3110 . (9) 

K2 1 
For the small pressure gradients considered, it is 
assumed that p can be expanded in a Taylor 
series neglecting the second-order terms to give 

dp 
P = PO + z x. 

Also, dp/dx is approximated by Ap/L so that 

p = po + $c, 

From kinetic theory, 

pD,2 - c 

RT ’ 

(10) 

(11) 

(12) 

where C, is a constant. From the definition of z, 

dx = L dz. (13) 

Substituting equations (llH13), into equation 
(9) gives on rearrangement, 

dy2 N2La --~ 
dz C, Y2 = 

(14) 

Substituting the definitions of b, and b, into 
equation (14), integrating and applying the 
boundary conditions y, = y,, at z = 0 and 
y2 = y,, at z = 1 gives 

1 62 

( )i 
PO b 

b, 
yzo - ; - pexp -- Ap I 

I 
log po + hpPo + (2)2! Ap L(blPo)2 + &($P,>’ + . ..I 

exp @A 
(15) 
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The series contained in the braces converges for 
all values of b,(p,,/Ap) and b,(p, + Ap)/Ap. It is 
convenient to define an average diffusion co- 
efficient D, for the transition regime by means of 
the following equation : 

Nz =&his (16) 

Equations (15) and (16) can be solved by the 
following trial and error procedure. First, 
assume a value of D, and then calculate the 
corresponding value of Nz from equation (16). 
Next use this value of Nz to calculate y,, from 
equation (15) and then compare the magnitude 
of the calculated value of y,, with the known 
value from the boundary condition at the tube 
exit. This procedure can be repeated until the 
correct value of D, is obtained. 

APPLICATION TO FLOW IN POROUS MEDIA 

The usual porous material contains numerous 
small voids which form complex flow paths for 
vapor transport. These flow paths are non- 
uniform in cross-section and are not straight. 
The method used for analysing this case is to 
assume the voids form circular and straight 
capillaries. However, for actual substances, the 
analytical equations resulting from these as- 
sumptions should be altered to include the 
effects of devious flow paths and blockages 
caused by the structure of the porous sample. 
Parameters which account for these irregulari- 
ties are called “effective parameters”. 

The analytical results presented in this paper 
can be used for actual porous media in obtaining 
the magnitude of the effective diffusion coefIi- 
cient if the values of D,, and D,, used in the 
definitions of b, and bz are the effective values for 
the porous sample. Effective values are defined 
so that the vapor flux can be written in terms of 
the total sample area and its actual thickness. 
Due to the complexities of the structure of 
porous materials, the effective values of D, 2 and 
D,, are not predicted analytically; but, instead, 
are measured experimentally. In order to reduce 

the amount of experimental data required, 
Scott and Dullien [5] suggest that 

(17) 

Thus by obtaining the value of (D1& by a 
single experiment, the value of (D& can be 
calculated by substituting the experimental 
value of (D12)e and the known values of D,, 
and D,, into equation (17). To calculate a 
theoretical value for (D,), for the porous sample, 
the values of (Dl& and (DKJe are used to ob- 
tain b1 and b, from their definitions, and then 
equations (15) and (16) are solved by the itera- 
tion previously described. 

EXPERIMENTAL INVESTIGATION 

The experimental equipment used is shown 
schematically in Fig. 1. The absolute pressure 
on the lower side of the. porous sample was 
measured by means of a Wallace and Tiernan* 
pressure gage. The pressure drop across the 
sample was determined with a Dwyert differen- 
tial pressure gage. The temperatures above and 
below the porous material were determined with 
copper-constantan thermocouples. The species 
concentrations above and below the material 
were determined with HygrodynamicsJ electric 
hygrometer sensing elements. These elements 
were calibrated by means of the procedure de- 
scribed in reference [6]. The weight was mea- 
sured with a Mettlert balance. 

Tests were conducted on several samples of 
porous freeze-dried beef steak using an air- 
water-vapor mixture. The procedure involved 
placing several small cubes of ice in an insulated 
cup located in the inner cylinder (see Fig. 1). The 
porous sample was then sealed as shown over 
the open end of the inner cylinder and the 
vacuum chamber was closed. Valve 1 (solenoid 
operated) was opened so that during pump down 
no pressure gradient existed between the inner 
cylinder and the vacuum chamber. Valve 2 was 

* Wallace and Tiernan, Inc., Bellville, N.J. 
t F. W. Dwyer Mfg. Co., Michigan City, Indiana. 
1 Hygrodynamics, Inc., Silver Spring, Maryland. 
$ Mettler Instrument Corp.. Highstown, New Jersey 
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opened and the chamber pumped until the de- 
sired pressure was obtained and then this valve 
was closed. Valve 3 was opened and closed for 
admitting air as required to obtain the desired 
concentrations. Valve 1 was then closed so that 
the water-vapor would flow through the porous 
sample and eventually to the condenser. Dry 
ice and acetone were used as the condenser 
coolant. Valve 4 was then adjusted to give the 
desired back pressure. 

In order to determine when equilibrium con- 
ditions existed, the pressure, concentration, and 
temperatures above and below the sample were 
measured. If these measured quantities re- 
mained unchanged for a period of 2 h, it was 
assumed that equilibrium conditions held and 
the pressure, temperature, and water-vapor con- 
centration above and below the sample were 
recorded. The weight was measured with a 
Mettler balance and was recorded. This pro- 
cedure was repeated at 30 min intervals over a 
2 h period. If conditions remained constant, the 
measurements were considered valid. The mass- 
flow rate was calculated from the weight loss; 
from this known rate, the thickness of the sample, 
and the pressure, temperature, and concentra- 
tion data, the effective average diffusion coeffi- 
cient was calculated from equation (16). 

RESULTS 

The experimental results for (D,), from mea- 

surements made on several samples of beef are 
given in Table 1. In addition, the values of 
(D,), calculated by using the theory presented in 
this paper are given for each of the conditions 
used in the experimental work. In applying the 
theory, a value for (D,,), of 3 the value for free 
diffusion in air at atmospheric pressure as sug- 
gested by Harper and Chichester [3] was used. 
Completely diffuse momentum transfer was 
assumed giving S = 1. Although S has not been 
measured for the present case, data presented by 
Carman [7] for similar cases indicate that this 
assumption is relatively accurate. It is seen that 
close agreement exists between these theoretical 
and experimental values of (D,), appearing in 
Table 1. Since different samples were used, the 
property variation of the samples can account 
for most of the deviation between theory and 
experiment. 

The final information presented in Table 1 is 
the value of (D,), predicted by the theory given 
in reference [3]. A much wider discrepancy 
exists between this theory and the experimental 
data than exists for the analytical work given 
above. This lack of correlation probably lies in 
the assumption of reference [3] that the transfer 
modes of heat conduction and diffusion are 
analogous. As discussed in the introduction of 
this paper, these modes are not analogous; as a 
consequence, a large variation from experiment 
is to be expected. 

Tub& 1. Ej’jective rrwragr dijjtision coefficient for freeze-dried beef 

Average pressure 

@o + PLY2 

(torr) 

144 
1.58 
1.64 
2.25 
2.28 

YW 

0.805 
0.71 
0.856 
0.813 
0,683 

YWL 

0.585 
0.565 
0.57 
0.52 
0.55 

(D,), obtained (D,), obtained (D,), calculated by 
experimentally by theory of theory of reference 

this paper [31 

(ftZ/s) (ft*/s) (ftZ/s) 
-__ 

0.015 0.017 a031 
0.019 0.018 0.028 
0.012 0015 0,028 
0010 0.010 0.02 1 
0.017 0,015 0.020 
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R&.umUne analyse thtorique et une &tude expkrimentale sont exposkes pour les tcoulements en bloc 
et de diffusion d’un mklange gazeux binaire en rCgime permanent. Ces ktudes sont valables dans toute la 
gamme entre 1’8coulement moltculaire et 1’6coulement visqueux. La thtorie de l’tcoulement B travers un 
capillaire sous I’effet d’un faible gradient de pression a et& effectube. On ktablit le bilan de la quantite de 
mouvement d’un constituant du mClange gazeux atin d’obtenir une Cquation pour la vitesse de transport 
de ce constituant. 

Les rtsultats theoriques pour le capillaire sont modifies dans le cas de transport B travers un matirriau 
poreux en le considerant comme un faisceau de capillaires. Les r&ultats expCrimentaux pour le transport 
d’air humide & travers de la viande IyophilisCe sont p&en&; ces rtsultats sont en bon accord avec les 

rbsultats theoriques pour le matkriau poreux. 

Zusammenfassung-Analytische und experimentelle Analysen wurden fiir die GesamtstrGmung und die 
Diffusionsstrijmung eines bin&en Gasgemisches im stationgren Zustand angegeben. Die analytische 
Untersuchung wurde an der Striimung durch ein Kapillarrohr bei kleinem Druckgradienten gemacht. 
Fiir eine Komponente des Gasgemisches ist eine Impulsbilanz durchgefiihrt urn eine Gleichung fiir die 
Transportgeschwindigkeit dieser Komponente zu erhalten. 

Die analytischen Ergebnisse fiir das Kapillarrohr sind im Falle des Transports durch poriises Material 
derart modifiziert, dass dieses Material als ein Biindel von Kapillarrohren angesehen wird. Versuchsergeb- 
nisse fiir den Transport eines Luft-Wasserdampfgemisches durch gefriergetrocknetes Fleisch sind angege- 

ben ; diese Ergebnisse stimmen gut mit den analytischen fiir porijses Material iiberein. 

AaEoTsqAJI-BbrnonHeH TBOpeTH’ioCKHti II 3KCIIBpMMeHTaJIbHJ&i aHaJII13 ~H~~Y3HOHHO~O 
TBYBHMH CMCCA 6llHapHOrO r’838 IIpH CTaqklOHapHOM peHCHMB. AHanNa CnpBBBAnHB AJIH BCet 
06JracT&i MemAy ‘IIICTO MOJIoKynRpHbIM II BR3KIlM ToYl?HIIRMII. HpOBBABH TBOpoTHYoCKat 
BHaJII13 TBqeHMH B KaIIHJIJIHpHOt Tpy6Ke, IIOABepraBMOtt AettCTBEIIO Ht?6OnbmOrO rpa@ieHTa 
ABBJIBHHH . HpH nOMOH.Vl MeTOga 6anaHca KOJIIlVeCTBa ABIlHteHHR IlOJlyYeHO ypaBHeHHe 

IIepeHOCa OTAeJIbHOrO KOMIIOHeHTa ra3OBOft CMeCA. 

TeopeTmecKHe pe3yJIbTaTbI, IlOJIyYeHHbIe Ha KaIltiJlJIHpHOfi Tpy6Ke, UCllOJlb3OBaHbI &JIrl 

pacsGTanepeHocaqepea nop~cTbIt~aTep~a~~,KoTopbIZtpaccMaTp~Bajlc~KaKnysoKan~nn~p- 

HbIX Tpy60~. npllBBAeHb1 3KCIIepMMeHTaJIbHbIe AaHHbIB n0 IIepeHOCy CM@% BO3AYX-BOAP- 
nap B Mflce, nofisepraeMoM cymKe aaMopamx3aHHeM. 3TII pB3yJIbTaTbI AOBOJIbHO XOpOmO 

cornacyaTcH c TeopeTAsecKHMM AaBHbIm An IIOp~CTOrO MaTepIiana. 


